Apakah Anda pernah memperhatikan kenapa tangga jalan yang dibangun di daerah pegunungan sangat presisi? Ternyata, dalam proses pembangunannya, ada ilmu matematika yang dilibatkan yaitu gradien. Dikutip dari gradien adalah nilai kemiringan atau kecondongan suatu garis yang membandingkan antara dua komponen yaitu komponen Y ordinat dengan komponen X absisi. Gradien inilah yang akan menentukan tingkat kemiringan yang terjadi pada suatu garis dalam koordinat cartesius. Gradien suatu garis bisa miring ke kanan, ke kiri, curam, maupun landai. Arah dan kemiringan garis ni ini tergantung dari nilai komponen X dan komponen Y nya. Untuk menentukan tingkat kemiringan yang tepat, ada rumus yang diterapkan yaitu rumus gradien. Rumus ini sangat penting agar tangga atau jalan yang dbangun memiliki kemiirngaan yang tepat sehingga tidak mencelakai orang ketika melewati nya. Untuk informasi lebih lengkapnya, simak penjelasan di bawah ini. Sifat-Sifat Gradien dari Dua Garis Lurus Dikutip dari Zenius, ada sifat dua garis lurus yang dapat membantu menentukan gradien dari dua garis. Berikut ini penjelasannya. 1. Dua Garis Sejajar Bila garis A dan B saling sejajar, maka keduanya memiliki nilai gradien yang sama dan dapat dinyatakan dengan mA = mB. 2. Dua Garis Tegak Lurus Jika garis A dan garis B saling tegak lurus, cukup kalikan kedua gradiennya seperti ini mA x mB = -1 Pengertian Gradien Tegak Lurus Seperti yang sudah Anda ketahui sebelumnya, salah satu sifat gradien adalah memiliki dua garis tegak lurus. Bisa dibilang, gradien tegak lurus merupakan garis yang saling berpotongan dan pada titik potongnya membentuk siku-siku sebesar 90°. Apabila dua garis tegak lurus ini dikalikan akan menghasilkan angka -1. Oleh karena itu, rumus yang digunakan adalah y=mx + c Sedangkan rumus gradiennya adalah m1=-1/m2 Contoh Soal Agar Anda lebih paham tentang gradien tegak lurus dan cara menggunakan rumusnya, simak contoh soal yang dikutip dari berbagai sumber ini. Contoh Soal 1 Diketahui sebuah persamaan garis lurus 2x + y – 6 = 0. Tentukanlah gradien garis tegak lurus dari pertanyaan tersebut. Pembahasan a = 2 b = 1 c = -6 m1 = -a/b = -2/1 = -2 Gradien dari garis tegak lurus adalah m1 x m2 = -1 M2 = -1/m1 = -1/-2 =1/2 Sehingga, gradien garis yang tegak lurus dengan garis 2x + y – 8 = 0 sebesar ½. Contoh Soal 2 Berapakah besaran persamaan garis lurus yang melalui titik 2,5 dan tegak lurus garis x – 2y + 4 = 0? Pembahasan Garis 1 melalui titik 2,5 Garis 2 x – 2y + 4 = 0 Hubungan kedua garis tegak lurus berlaku m1 x m2 = -1 ....i Gradien m2 dapat diketahui dari persamaan garis 2 x – 2y + 4 = 0 2y = x + 4 y = ½ x + 2 sehingga diperole m2 = ½ ....ii Subtitusi persamaan ii ke persamaan i sehingga diperoleh m1 x m2 = -1 m1 x 1/2 = - m1 = -2 ....iii sehingga, persamaan garis yang melalui titik 2,5 dengan gradien m1= -2 yakni y – y1 = mx -x1 y – 5 = -3x -2 y – 5 = -2x + 4 y = -2x + 4 + 5 y = -2 + 9 sehingga ekuivalennya adalah 2x + y – 9 = 0. Contoh Soal 3 Suatu garis L tegak lurus dengan garis 3x - y = 4. Berapakah gradien dari garis L tersebut? Berarti dalam soal ada dua buah garis lurus, yang pertama adalah garis L dan yang kedua adalah garis dengan persamaan 3x - y = 4. Pembahasan gradien garis L kita sebut dengan "m₁" gradien garis 3x - y = 4 kita sebut dengan "m₂" Anda harus mencari dulu gradien dari 3x - y = 4 atau disebut dengan "m₂". 3x - y = 4 pindahkan 3x ke ruas kanan sehingga menjadi -3x ini agar y sendiri berada di ruas kiri 3x - y = 4 -y = 4 - 3x bagi semua dengan -1 agar y koefisiennya satu. -y = 4 - 3x -1 -1 -1 y = -4 + 3x Kalau y sudah sendiri dan koefisiennya sudah satu, maka gradien garisnya adalah angka di depan variabel "x" Jadi gradiennya adalah 3 atau m₂ = 3. Kemudian, Anda perlu mencari gradien garis L. Gunakan hubungan m₁ × m₂ = -1 m₁ × m₂ = -1 ingat m₂ = 3 m₁ × 3 = -1 m₁ = -1 3 m₁ = -1/3 Gradien garis L m₁ = -1/3 Contoh Soal 4 Suatu garis H tegak lurus dengan garis 2x - 3y = 5. Berapakah gradien dari garis H tersebut? Pembahasan gradien garis H sebut dengan "m₁" gradien garis 2x - 3y = 5 sebut dengan "m₂" Jika ada dua buah garis yang saling tegak lurus, maka hasil kali kedua gradiennya adalah minus satu -1 dan bisa ditulis m₁ × m₂ = -1 Sifat inilah yang akan digunakan untuk menentukan gradien garis H. Mencari gradien 2x - 3y = 5 Anda harus mencari dulu gradien dari 2x - 3y = 5 atau disebut dengan "m₂". 2x - 3y = 5 Pindahkan 2x ke ruas kanan sehingga menjadi -2x ini agar y sendiri berada di ruas kiri 2x - 3y = 5 -3y = 5 - 2x bagi semua dengan -3 agar y koefisiennya satu. -3y = 5 - 2x -3 -3 -3 y = -5 + 2x 3 3 Kalau y sudah sendiri dan koefisiennya sudah satu, maka gradien garisnya adalah angka di depan variabel "x" Jadi gradiennya adalah 2/3 atau m₂ = 2/3. Nah, m₂ sudah diketahui dan sekarang Anda bisa mencari gradien garis H. Gunakan hubungan m₁ × m₂ = -1 m₁ × m₂ = -1 ingat m₂ = 2/3 m₁ × 2/3 = -1 m₁ = -1 2/3 m₁ = -1 x 3/2 Gradien garis H m₁ = -3/2
PerhitunganRumus Metode Garis Lurus Tahun Fiskal. = Rp5.400.000 x (4/12) = Rp 1.800.000. Sehingga dalam penyusutan tahun fiskal adalah sebesar Rp1.800.000, yaitu didapatkan dari perhitungan di atas. Beberapa alat diperoleh untuk awal tahun sebesar Rp150.000.000, dengan nilai residu sebesar Rp8.000.000 serta umur ekonomisnya yaitu 5 Pada artikel Matematika kelas 8 ini, kamu akan mempelajari cara mencari kemiringan gradien dari sebuah garis lurus disertai dengan masing-masing contoh soalnya. — Siapa yang pernah naik pesawat terbang? Tahukah kamu saat pesawat lepas landas take off atau ingin mendarat landing, pesawat memerlukan kemiringan tertentu agar bisa terbang atau tiba di landasan dengan sempurna. Nah, salah satu perhitungan matematika yang dapat diaplikasikan dalam menentukan kemiringan badan pesawat saat lepas landas atau mendarat akan kita bahas pada artikel kali ini. So, stay tuned, ya! Coba deh kamu perhatikan gambar di atas. Jika kita anggap lintasan yang dilalui pesawat adalah suatu garis lurus, maka saat pesawat bergerak menuju udara, pesawat akan berjalan lurus ke atas dengan kemiringan tertentu. Begitu juga saat pesawat kembali menuju darat. Nah, kemiringan pada garis lurus ini dalam matematika disebut dengan gradien. “Gradien adalah nilai yang menunjukkan kemiringan/kecondongan suatu garis lurus”. Umumnya, gradien disimbolkan dengan huruf “m”. Gradien akan menentukan seberapa miring suatu garis pada koordinat kartesius. Gradien suatu garis dapat miring ke kanan, miring ke kiri, curam, ataupun landai, tergantung dari nilai komponen X dan komponen Y nya. Contoh macam-macam kemiringan gradien pada garis lurus dapat kamu lihat melalui gambar di bawah ini “Garis yang gradiennya positif akan miring ke kanan, sedangkan garis yang gradiennya negatif akan miring ke kiri”. Sekarang, kita coba cari tahu yuk mana garis yang gradiennya positif dan mana garis yang gradiennya negatif. Pada gambar nomor 1, ternyata garisnya miring ke kanan, sehingga dapat diketahui kalau gradiennya akan bernilai positif. Sementara itu, pada gambar nomor 4, garisnya miring ke kiri, sehingga gradiennya akan bernilai negatif. Nah, kalau gambar nomor 2 dan 3, garisnya miring ke mana, ya? Kira-kira, gradiennya bernilai positif atau negatif? Hayoo… ada yang tau? Baca Juga Bagaimana Ya Cara Menentukan Persamaan Garis Lurus? Oke, setelah kita mengetahui apa itu gradien suatu garis, materi yang akan kita bahas selanjutnya adalah bagaimana cara mencari nilai gradien tersebut. Wah, penasaran nggak, sih? Kalau gitu, langsung saja yuk kita simak! Terdapat dua cara untuk mencari nilai gradien suatu garis yang bisa kamu ketahui, yaitu 1. Jika diketahui bentuk persamaan garisnya Secara umum, bentuk persamaan garis lurus ada dua macam, sehingga cara untuk menentukan gradiennya juga berbeda beda, tergantung dari bentuk persamaan garisnya. a. Persamaan garis y = mx + c Pada persamaan garis ini, gradien dapat dicari dengan mudah. Kenapa? Karena gradiennya adalah koefisien dari variabel x itu sendiri, yaitu m. Contoh Garis y = 3x + 2, koefisien x adalah 3. Jadi, gradien garis tersebut adalah 3. Garis y = -2x + 8, koefisien x adalah -2. Jadi, gradien garis tersebut adalah -2. b. Persamaan garis ax + by + c = 0 Jika diketahui persamaan garis ax + by + c = 0, maka langkah pertama yang harus kamu lakukan adalah ubah persamaan garis tersebut ke bentuk y = mx + c, dengan m adalah gradien garis tersebut. Di sini, kamu harus perhatikan tanda +/- dari koefisien masing-masing variabelnya, ya. Soalnya, tanda +/- akan berubah ketika kita pindah ruas persamaannya. Nah, kalau kamu merasa bingung, coba perhatikan contoh soal di bawah ini, ya. Contoh 1. Hitunglah kemiringan gradien pada persamaan garis berikut a 5x + 2y – 8 = 0 b 2x – 3y = 7 Penyelesaian a Pertama-tama, kita ubah dulu persamaan 5x + 2y – 8 = 0 ke bentuk y = mx + c, sehingga persamaannya menjadi, 5x + 2y – 8 = 0 2y = -5x + 8 Koefisien x bernilai positif, yaitu 5, sehingga setelah kita pindah ruas ke kanan akan bernilai negatif. Begitu juga dengan konstanta -8 yang berubah tanda menjadi 8 karena pindah ruas ke kanan. Selanjutnya, kita bagi kedua ruas dengan 2. y = -5/2x + 4 Jadi, gradien dari persamaan garis tersebut adalah -5/2. Gimana? Kamu paham nggak sampai sini? Oke, supaya kamu semakin paham, coba kamu kerjakan contoh poin b. Terus, jawabannya kamu share deh di kolom komentar. Ditunggu ya jawabannya! 2. Jika diketahui dua titik yang dilalui garis Jika diketahui dua titik yang dilalui suatu garis lurus, misalnya x1,y1 dan x2,y2, maka gradiennya dapat diperoleh dengan rumus m = y/x = y2-y1/x2-x1. Contoh soalnya seperti ini. Contoh Perhatikan gambar berikut Gradien garis k pada gambar adalah… Penyelesaian Diketahui dua buah titik yang dilalui oleh garis k, yaitu 4,0 dan 0,6. Misalnya kita pilih x1,y1 = 4,0 dan x2,y2 = 0,6, gradien garis tersebut dapat dicari menggunakan rumus m = y/x = y2-y1/x2-x1. Jadi, gradien garis tersebut adalah -3/2. Di sini kamu bebas untuk memilih titik mana yang jadi x1,y1 dan titik mana yang jadi x2,y2 ya karena hasilnya akan sama saja. Baca Juga Belajar Sistem Koordinat Kartesius dan Cara Membuat Grafiknya, Yuk! Wah, ternyata mudah ya untuk mencari kemiringan suatu garis? Rumusnya juga simpel lagi. Nah, untuk lebih memudahkan kamu dalam mengerjakan soal-soal tentang gradien, artikel ini sudah merangkup rumus-rumus di atas tadi, lho. Tapi ingat, kamu jangan hanya hafal rumus-rumusnya saja, ya. Kamu juga harus pahami konsepnya. Caranya gimana? Kamu bisa identifikasi soalnya, apakah di soal diketahui persamaannya saja atau diketahui dua titik yang dilalui persamaan garis itu. Biasanya sih, untuk cara nomor dua, soal yang disediakan berupa gambar grafik. Setelah itu, baru deh kamu bisa gunakan rumus-rumus yang sudah dijelaskan sebelumnya. Cara mencari kemiringan gradien suatu garis lurus banyak sekali diterapkan untuk menyelesaikan berbagai masalah dalam kehidupan sehari-hari, lho. Salah satunya, seperti yang sudah disebutkan di awal tadi, yaitu untuk memperhitungkan kemiringan badan pesawat saat lepas landas maupun mendarat. Bayangkan saja jika pilot tidak memperhitungkan kemiringan pesawat saat ingin mendarat, pasti jadinya bakal kayak gini, Hiiiiiiyyy… serem banget, kan! sumber Jadi, nggak ada alasan lagi buat kamu untuk malas belajar matematika dengan bilang kalau rumus matematika nggak ada manfaatnya sama sekali. Trust me, setiap ilmu yang kamu pelajari pasti ada manfaatnya! Oke, kita masuk ke materi yang terakhir ya, yaitu hubungan antara dua garis lurus. Hubungan dua garis lurus ini juga sangat penting untuk kamu ketahui karena biasanya untuk mencari gradien suatu garis akan bergantung dengan garis yang lain. Gimana sih maksudnya? Untuk lebih jelasnya, coba kamu perhatikan gambar di bawah ini! Baca Juga Cara Mencari Rumus Pola Bilangan dan Contohnya, Pelajari Yuk! Yuhuu… selesai sudah materi kita kali ini. Apakah kamu sudah paham tentang bagaimana cara mencari gradien garis lurus? Jika kamu ada pertanyaan, jangan ragu untuk menuliskannya di kolom komentar, ya. Nah, kalau menurutmu materi ini kurang lengkap, kamu bisa lho belajar lebih dalam lagi di ruangbelajar. Selamat belajar, selamat meraih mimpi! Referensi As’ari Tohir M, Valentino E, Imron Z, Taufiq I. 2017 Matematika SMP/MTs Kelas VIII Semester 1. Jakarta Kementerian Pendidikan dan Kebudayaan Artikel diperbarui pada 11 November 2022. Gradienmerupakan tingkat kemiringan ruas garis atapun garis. Gradien dapat ditentukan dengan membagi Δy dengan Δx. Dari kesimpulan tersebut, kita juga dapat menentukan gradien dari ruas garis KL dan PQ. Gradien dari ruas garis KL adalah Δy/Δx = (7 – 3)/ (2 – 0) = 4/2 = 2. Sedangkan gradien dari ruas garis PQ adalah (5 – 6)/ (3 – 1- Dua garis lurus yang saling sejajar memiliki nilai gradien yang sama besar. Sedangkan, dua garis lurus yang saling tegak lurus adalah hasil kali gradien dari kedua garis sama dengan sama dengan – dari buku Cara Pintar Menghadapi Ujian Nasional 2009 Matematika 2009 oleh Ruslan Tri Setiawan, garis l dengan gradien m1 dan garis g dengan gradien m2 saling sejajar jika memenuhi Sementara, garis l dengan gradien m1 dan garis g dengan gradien m2 saling tegak lurus memenuhi Baca juga Cara Menggambar Grafik Garis pada Persamaan Garis LurusContoh soal 1 Tentukan persamaan garis yang melalui titik 2,5 dan sejajar dengan garis y = 2x+5 Jawab Garis y = 2x+5 adalah bentuk dari persamaan y = mx+c, di mana m adalah gradien. Jadi garis y = 2x+5 mempunyai gradien m = 2. Dua garis sejajar maka Persamaan garis y-5 = 2x-2y = 2x-4+5y = 2x+1 Baca juga Cara Menentukan Persamaan Garis Singgung Lingkaran Contoh soal 2 Tentukan gradien persamaan garis 2x+4y+6 = 0!